Sky Data with LSST Sensor in 2009

Andrei Nomerotski 26 January 2016

History

Data taken in 2009 and 2011 by O'Connor, Kotov, Haupt, Crotts et al at MDM Observatory (Kitt Peak)

- Sample image linked to the Useful Dataset page
- Took lots of astrometry data (tree rings, edges, dithering etc), available to interested parties
- Photo: MDM Observatory (Kitt Peak) 2.4m Hiltner Telescope in 2009

Astronomical data with LSST sensors

Early LSST prototypes:

13.5 µm pixels
Plate scale 0.15"/pixel
(LSST 0.2"/pixel)

Looked at NGC7209 field

Same DM- and ngmix-based code used before for Fe55 and pinhole analysis

~ find 250 stars/ 40 sec exposure

- Used long exposures (40 and 20 sec)
- Fit stars with 2D Gauss
- For each exposure: plot PSF of all objects in flux bins
- See B-F at a few % level over the whole dynamic range
 - Horizontal axis is total flux, need to redo this vs max pixel flux

Selections

- Require Nmin > 150
- Have 27 exposures

Sigma, slope & their errors

Correlation plots: include all stars for exposures with >150 stars

Strong correlation in ellipticity direction

- Observe correlations, ex PSF vs slope, for different exposures
- Can it be described by Astier et al 2014 and corrected as in Gruen et al 2015?
- Can it be simulated using physical model?
- Work in progress
- Will take more data in May at NOFS

MonoCam

Part of DESC Science Road Map

US Naval Observatory Flagstaff Station (NOFS)

- Collaboration with Dave Monet
 - Dave's proposal: Primary interest is looking at known astrometric fields wherein the positions of a bunch of stars are known to 0.0001 arcsec, and do standard checks like rotating the CCD, changing exposure times, and similar.

have 2 telescopes that we would be interested in trying:

- 61-inch:
 - Scale is 13.5 arcsec/mm (LSST is 20 arcsec/mm)
 - 3-inch shutter
 - full set of 3x3-inch SDSS filters
 - Seeing 1.2 arcsec.
- 40-inch:
 - Scale is 40.0 arcsec/mm
 - corrected field of view of about 1.0 square degrees
 - 6-inch shutter
 - 6x6-inch SDSS filters (g,r,i,z), Johnson (U,B,V) and Kron-Cousins (R,I)
 - Seeing 1.5 arcsec.
- BNL has y filter interesting measurement for thick CCDs (PSF, focusing, parallax, BF etc)

Studies

First priority:

- Astrometry
- Brighter Fatter: image dense star fields with different exposures
 - Large dynamic range in the same image
 - Stable setup (vibrations)
- Dithering

With good planning also:

- Atmospheric effects
 - Can do fast imaging of stars by shifting by 100 pixels (this takes only fraction of ms), expose, shift, expose etc
 - Compare to Phosim, others
- Photometry
 - Ultimate precision
 - Atmospheric effects
 - Exoplanets, strong lenses?
- Open to other suggestions

Setup and plans

- Will use BNL Lab 4 R&D setup, available for SAWG needs
 - Single CCD cryostat, LN cooled
 - Reflex (or ARCHON) controller
 - RTS2 software
 - Power, bias, temp controller etc
- Can install both e2v and ITL sensors
- NOFS will help with interfaces
- Agreed to take data in the first half of May 2016, contact us if interested
- Will start having dedicated meetings

